2017年高考数学(理科)全国Ⅰ卷试题分析
信息来源: 安徽省教育招生考试院       发布日期:2017-07-04      浏览次数:6400次

——基础扎实、减少失误便可成就高分

合肥市第十中学  张庆

2017年全国高考理科数学乙卷在7日下午3点与考生见面,揭开了它的神秘面纱,纵观整张试卷,它遵循了《课程标准》的基本理念,严格贯彻《2017年全国统一高考考试大纲》基本要求,试卷在稳定中做了一定的创新,重视考查学生的核心数学素养,不仅兼顾知识点、思想方法与能力的考查,也关注了数学的应用意识与创新意识;试卷从中低档题到高档题梯度明显,有良好的区分度。下面我对试题做具体分析,并总结特点,不妥之处,敬请批评指正。

一、试题分析

(1)选择题总结:从难度上来看,第1-4题和第8题属于简单题,基本都是单一知识点的考察;5、6、7、9、10、11属于中等题,是考察对于知识的灵活应用;第12题为较难题,以破译激活码为背景,考查与等比数列求和有关问题,需要学生正确理解分析问题,掌握综合知识以及灵活应用。从内容上来看,简单题主要包含:集合、几何概型、复数、等差数列、程序框图等;中等题主要包括利用函数性质解不等式、二项式定理、空间几何体三视图侧面积、三角函数图像及变换、抛物线焦点弦最值、指对数互化与利用函数性质比较大小等;较难题为等比数列求和有关问题。

(2)填空题总结:第13和14题属于容易题,考查向量模的计算,第15题为中等题,考察双曲线和圆,需要知识的灵活应用;第16为较难题,考查平面几何中的折叠问题,需要学生正确分析问题,掌握综合知识以及灵活应用。

(3)解答题总结:从内容上来看,由于今年考试大纲删除了几何证明选讲,所以选考题的内容是参数方程与坐标系、不等式的二选一,其中22题侧重考查参数方程和普通方程互化,椭圆参数方程应用,不等式考查不等式求解,恒成立求参数范围,均属于常见题型;必考题目包含:解三角形、立体几何、概率统计、解析几何、导数及其应用。从难度上来看,17-19属于中等题,是考察对于知识的灵活应用(包含概率统计、立体几何、解三角形);20、21为较难题,基本上是考察综合题,需要学生正确分析问题,掌握综合知识以及灵活应用(包含圆锥曲线与方程、导数及其应用)。和往年的全国卷相比较,解三角形和2016年全国卷考题相似,解析几何和2015年考题相似,导数题也与2016年相似,立体几何的图形变得更加常规,计算方面则是二面角,概率统计题的背景是正态分布在2014年也出现过。

总体来说,试卷的偏难题不多,基本为选择最后一题、填空最后一题、21题最后一问分值大约23分。大部分题目还是考察对于基础知识的应用以及基本解题方法,属于对通性通法的考察。

二、试题特点

(1)注重基础、主干知识突出

整张试卷给人最大的感受就是基础知识扎实的学生会得高分,很多试题是对单一知识点或基础知识交汇点考查,如第1、2、3、4、8、13、14题,简单处理条件即可得到正确答案,但是,支撑高中数学知识体系的主干内容始终会占较高比例,如三角部分17分、数列10分、概率统计17分、立体几何22分、解析几何22分、函数导数与不等式交汇22分,六大模块共计110分,充分体现高考对于主干知识的重视程度。

(2)发展能力、注重实际应用

在2017年新课标考试大纲中,提出七项能力要求(空间想象能力、抽象概况能力、推理论证能力、运算求解能力、数据处理能力、应用意识和创新意识),试卷中都有明显体现,如第7、16题通过几何图形很好的考查了学生的空间想象能力,第12、16、19题在大段文字叙述的基础上,考生需要理解题意做出抽象概括,体现能力考查。不仅如此,试卷再次重视数学知识的应用,如12、19题背景来自于学生所能理解的生活现实与社会现实,以破译密码,抽检零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色。

(3)传承经典、再现传统文化 第2题以太极图为背景设计了一道几何概型的试题考查,2016年也出现了此种考题,但在古代文化之下,试题的传承意味更浓,值得推广!

(4)稳中有变,体现综合创新

为提高试卷区分度,注重基础的同时也得充分考查学生的创新意识。如试卷的第16题,在平面图形之中通过裁割形成空间几何体,在最值的求解中需要探索边长与体积的联系,正确建立数学模型并解决问题,给优秀学生搭建展示舞台,彰显学生的数学核心素养;又如第21题导数的综合应用,平淡中透露函数的核心思想,转化与化归、数形结合、分类与整合等多种能力在试题的解答中得到体现,实现了高考的选拔功能。连续观察近两年的高考试题可以发现,在选填的压轴题上不拘泥于函数导数应用类试题,这是各地区模考命题需要引起重视的地方。

总之,2017年全国卷Ⅰ理科数学试卷,体现课标理念,遵循了考试大纲和考试说明,注重能力立意,在兼顾考点的同时注重基础,突出主干,多层次角度考查学生的数学素养和应用能力,较2016年高考理科数学难度有所降低,对于基础扎实,考场中少犯错的学生来说,应该能取得一个不错的分数!

Copyright (c)2008www.ahzsks.cn All Right Reserved     安徽省教育招生考试院版权所有
皖ICP备05021720号